IMAC: Impulsive-mitigation adaptive sparse channel estimation based on Gaussian-mixture model
نویسندگان
چکیده
Broadband frequency-selective fading channels usually have the inherent sparse nature. By exploiting the sparsity, adaptive sparse channel estimation (ASCE) methods, e.g., reweighted L1-norm least mean square (RL1-LMS), could bring a performance gain if additive noise satisfying Gaussian assumption. In real communication environments, however, channel estimation performance is often deteriorated by unexpected non-Gaussian noises which include conventional Gaussian noises and impulsive interferences. To design stable communication systems, hence, it is urgent to develop advanced channel estimation methods to remove the impulsive interference and to exploit channel sparsity simultaneously. In this paper, robust impulsive-mitigation adaptive sparse channel estimation (IMAC) method is proposed for solving aforementioned technical issues. Specifically, first of all, the nonGaussian noise model is described by Gaussian mixture model (GMM). Secondly, cost function of reweighted L1-norm penalized least absolute error standard (RL1-LAE) algorithm is constructed. Then, RL1-LAE algorithm is derived for realizing IMAC method. Finally, representative simulation results are provided to corroborate the studies.
منابع مشابه
ROSA: Robust sparse adaptive channel estimation in the presence of impulsive noises
Based on the assumption of Gaussian noise model, conventional adaptive filtering algorithms for reconstruction sparse channels were proposed to take advantage of channel sparsity due to the fact that broadband wireless channels usually have the sparse nature. However, state-of-the-art algorithms are vulnerable to deteriorate under the assumption of non-Gaussian noise models (e.g., impulsive noi...
متن کاملMaximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments
Sparse adaptive channel estimation problem is one of the most important topics in broadband wireless communications systems due to its simplicity and robustness. So far many sparsity-aware channel estimation algorithms have been developed based on the well-known minimum mean square error (MMSE) criterion, such as the zero-attracting least mean square (ZALMS),which are robust under Gaussian assu...
متن کاملReweighted Factor Selection for SLMS-RL1 Algorithm under Gaussian Mixture Noise Environments
The sign least mean square with reweighted L1-norm constraint (SLMS-RL1) algorithm is an attractive sparse channel estimation method among Gaussian mixture model (GMM) based algorithms for use in impulsive noise environments. The channel sparsity can be exploited by SLMS-RL1 algorithm based on appropriate reweighted factor, which is one of key parameters to adjust the sparse constraint for SLMS...
متن کاملA Robust Distributed Estimation Algorithm under Alpha-Stable Noise Condition
Robust adaptive estimation of unknown parameter has been an important issue in recent years for reliable operation in the distributed networks. The conventional adaptive estimation algorithms that rely on mean square error (MSE) criterion exhibit good performance in the presence of Gaussian noise, but their performance drastically decreases under impulsive noise. In this paper, we propose a rob...
متن کاملRegularization Parameter Selection Method for Sign LMS with Reweighted L1-Norm Constriant Algorithm
Broadband frequency-selective fading channels usually have the sparsity nature. By exploiting the sparsity, adaptive sparse channel estimation (ASCE) algorithms, e.g., least mean square with reweighted L1-norm constraint (LMS-RL1) algorithm, could bring a considerable performance gain under assumption of additive white Gaussian noise (AWGN). In practical scenario of wireless systems, however, c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1503.00800 شماره
صفحات -
تاریخ انتشار 2014